
International Journal of Solids and Structures 59 (2015) 46–57
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r
Multistable grid and honeycomb shells
http://dx.doi.org/10.1016/j.ijsolstr.2015.01.002
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: el249@cam.ac.uk (E.G. Loukaides), kas14@cam.ac.uk

(K.A. Seffen).
E.G. Loukaides, K.A. Seffen ⇑
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
a r t i c l e i n f o

Article history:
Received 3 September 2014
Received in revised form 17 December 2014
Available online 10 January 2015

Keywords:
Multistable
Shell
Grid
Honeycomb
Composite
a b s t r a c t

The manufacturing of multistable shells has been dominated by the use of pre-stressed and composite
materials. Here we advocate the use of common materials through a simple design that requires no
pre-stressing and has an initially developable geometry. A rudimentary demonstrator is constructed
and serves as the starting point for further study. An existing homogenisation model for a lattice struc-
ture is combined with an analytical strain energy model from the literature to show the mechanical prop-
erties needed to construct an initially developable, bistable grid shell. The concept is also tested in a
commercial finite element package, where a number of parametric studies are performed. Both the dem-
onstrator and the FE model confirm the validity of the design while a series of parametric studies helps
establish the limits of this behaviour with respect to local and global geometry of grid shell and honey-
comb structures.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

This work addresses the challenge of designing initially devel-
opable, free-standing, multistable shells without the use of com-
posite materials or pre-stressing. Multistable shells have been
the focus of much recent work since they offer a basis for the con-
struction of morphing structures. They are able to support loads in
distinct geometries, without the need for elaborate mechanisms.
The manufacturing of multistable shells has been dominated by
the use of pre-stressed materials and fibre-reinforced composites;
in retrospect, this can be attributed to the work by Hyer (1981),
which introduced unsymmetric laminates as viable candidates
for engineering applications of bistable shells. Laminates are
attractive because they offer control of material properties through
the orienting of the distinct laminae. However, laminates also have
a number of disadvantages, namely, they are relatively expensive
and they require skilled manual assembly and dedicated facilities.
Perhaps most importantly, they are harder to employ in continu-
ous large-scale (in the order of tens of metres and above) and
small-scale (in the order of millimetres and below) structures.

At the same time, there has been a surge in the development of
‘‘smart materials,’’ which often provide the basis for morphing
structural applications. These can be expensive, offer highly spec-
ialised properties, and often are not straightforward to integrate
within the host structure; hence, there is clear motivation to find
alternative ways of controlling material properties. One attractive
approach is to use the local geometry of a material; with such
methods we can lower our dependence on more expensive and
often harder-to-manufacture composite materials. Some ways of
manipulating the macro-mechanical properties of shells through
patterning and texturing have been studied previously in this con-
text. Recent examples of such concepts exist in the form of corru-
gated shells (Norman et al., 2008; Norman et al., 2009) and
dimpled sheets (Golabchi and Guest, 2009).

Although these methods have their respective motivations and
applications, here we seek as simple a technique as possible, to
make manufacturing straightforward and scalable. Taking inspira-
tion from earlier laminate designs, we note that the major stiffness
contribution comes from the fibres; the matrix mostly serves as a
binder for those more essential structural components. Similar
properties can be obtained if we removed material from a solid
plate of an isotropic material, in such a way that reproduces the
stiffening action of the fibres along particular directions. The crea-
tion of perforations is both a simple procedure and an easily scal-
able one. This concept corresponds to grid shells, honeycombs and
perforated shells, whose global material properties can be manip-
ulated by variations in the local geometry. The correspondence
between the mechanical properties of long fibre composites and
gridshells is widely known, but the particular conditions that
would enable multistability in gridshells have not been examined
before.

The theoretical treatment of multistable shells has most com-
monly employed the Uniform Curvature (UC) assumption, first
used by Mansfield (1962). By considering ‘‘lenticular’’ sections,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.01.002&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2015.01.002
mailto:el249@cam.ac.uk
mailto:kas14@cam.ac.uk                
http://dx.doi.org/10.1016/j.ijsolstr.2015.01.002
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


E.G. Loukaides, K.A. Seffen / International Journal of Solids and Structures 59 (2015) 46–57 47
where the bending moment naturally diminishes at the periphery,
he produced exact solutions of the Föppl–Von Kármán equations.
The same author later justified the obvious weakness of the model
to describe a known variation of the curvature at the boundary
layer when constant thickness shells are considered. In Mansfield
(2005), the approximate width of the boundary layer is calculated
for an initially flat strip, thickness t, bent to a curvature j along its
length by end moments applied to its ends. The resulting width of
0:77

ffiffiffiffiffiffiffiffi
t=j

p
is very small for thin shells in large-deflection scenarios.

Hyer (1981) produced an even simpler model, using the same
UC assumption, and discretising the FVK equations with the Ray-
leigh–Ritz method. The simplicity of this model proved powerful
in many instances and was used in various studies, especially relat-
ing to composite plates under thermal loads (Salamon and Masters,
1995; Dano and Hyer, 1998). At the same time, deficiencies of the
UC assumption were noted, for example, Gigliotti et al. (2004)
point out that the importance of planform aspect ratio is missed
by both models. The failure of the UC assumption to exactly cap-
ture the boundary condition was mentioned above and led to var-
ious efforts to construct models with many more degrees of
freedom (Aimmanee and Hyer, 2004; Pirrera et al., 2012). This
appears to be so when stretching effects dominate behaviour, for
example, when the shell has initial Gaussian curvature. Coburn
et al. (2013) show that the deformed shapes of spherical caps have
boundary layers wider than Mansfield’s approximation — because
they possess significant Gaussian curvature, which can only be
captured accurately using higher-order curvature distributions.
Our initial and deformed shapes of shell are close to being develop-
able throughout: stretching (and boundary layer) effects are mini-
mal, which enables us to proceed with a uniform curvature
assumption.

Bistable, developable shells are not new. In the context of
MEMS, for example, we have various examples (Gerson et al.,
2012; Pham and Wang, 2011). These, however, contain the well-
known clamped, bistable arch and effectively rely on initially
loaded boundaries for bistability to proceed. The shells presented
here are unloaded and only restrained at one central point to pre-
vent rigid body motion.

A set of workers persisted in extending the Mansfield model,
especially in association with multistable shells, producing various
practical results along the way. Guest and Pellegrino (2006)
focused on a developable formulation that described bistable cylin-
drical shells, where bistability depends on the modular ratio
between different orientations of the structure; Seffen (2007),
accounting for both bending and stretching effects, showed that
multistability is possible even for isotropic, pre-stressed shells;
Vidoli and Maurini (2008) extended the scope of the examination
by Seffen to describe the feasibility of a shallow, tristable, orthotro-
pic shell; Fernandes et al. (2010), again with the same formulation,
gave a method of quasi-statically actuating a bistable, pre-stressed
shell. The analytical model used in the present work — an exten-
sion of the work in Seffen (2007) — clearly falls within this tradi-
tion, and the corresponding symbols are employed where
appropriate.

The aim of the present study is to prove that grid shells and
honeycomb shells can be made to be (at the very least) bistable
when initially free of stresses and singly curved. Both types of shell
are connected networks of beam-like elements, but their elastic
responses differ because of relative differences in their local geo-
metrical proportions. The cross-section of grid shell beams typi-
cally have comparable width and depth and thus, they respond
locally as classical Euler–Bernoulli, or Timoshenko, beams. Honey-
comb beams have a depth-to-width ratio greater than ten, and
behave as slender webs, which are more prone to local distortions
and instabilities when bending and torsion are locally applied; fun-
damentally, the Euler–Bernoulli hypothesis that cross-sectional
shape remains conserved, is not guaranteed, and the beams have
to be treated as plate-like elements aligned to the through-thick-
ness direction (Cote et al., 2004; Russell et al., 2011). On the other
hand, the elastic response of perforated plates, which are formed
by drilling, or stamping out, holes in a thin homogenous plate,
under simple in-plane loads can be found exactly by making use
of the well-known solution for the stress-field around a hole
(Slot and O’Donnell, 1971). This response is then cast as the set
of effective orthotropic properties, offered by an equivalent uni-
form plate without holes.

We address the feasibility of grid and honeycomb shells as
bistable candidates by reversing the homogenisation process in
the context of the previous well-known models of multistability:
these models reveal the required range of effective orthotropic
properties and initial uniform curvatures of the shell mid-surface.
We assume from the outset that the effective properties of our
shells do not depend on the initial uniform curvatures: so that
homogenisation considers a flat shell, for simplicity and thus, we
may decouple the realisation of the global geometry from the siz-
ing of the local beam elements. The latter is aided by well-estab-
lished homogenisation models for grid and honeycomb shells,
which in their majority, however, only deal with in-plane loading.
Converting these results into out-of-plane bending and twisting
moduli for each type of shell usually follows the practice by which
the so-called ABD matrices are obtained, by summing and integrat-
ing effects though the thickness (Mansfield, 2005). Here, this is
appropriate when the local behaviour is beam-like, as in grid
shells, because integration assumes implicitly that the cross-sec-
tional shape is conserved. To our knowledge, this has not been
tested for the deeper local beams in honeycomb shells, so we use
the same process but treat the results with caution. In order to test
and confirm our results, we resort to a complementary finite ele-
ment analysis of both shells.

Section 2 presents a physical demonstrator constructed in the
laboratory, which acts as motivation for the investigation that fol-
lows. Both grid shells and honeycomb shells can be defined by the
same geometrical terms, which are introduced in Section 3. The
overall geometry is dictated by the planform outline, its size and
its initial curvature. Locally, the beam network is a symmetrical
square mesh made up of interconnected prismatic sections gov-
erned by their length, width and height (or depth). Both sets of
properties are hierarchically related in the relative senses of mag-
nitude and orientation: the density of the grid network must be
high enough for homogenisation to be effective in practical terms,
and we describe the orientation by the angles between the local
beam directions, the global axis of initial curvature and the global
edges of shell. From the outset, we stipulate globally symmetrical
layouts, in order to reduce the number of independent parameters,
and we focus on effective material properties for two such orienta-
tions. These are chosen to avoid anisotropic coupling for further
simplicity, and the generalised Hooke’s laws in extension and
bending are expressed via the usual A and D matrices for orthotro-
pic materials.

Using the earlier UC model (Section 4), we then show that mul-
tistability is concomitant to the effective torsional rigidity, a, and
Poisson’s ratio, m, alone in the original dimensionless framework,
with both taking values as large as possible. Their expressions
are calculated from the Hooke’s laws explicitly in terms of the
ratios of the local geometrical parameters: we also calculate the
stability landscape in terms of a range of values for each parameter,
in order to identify the relative requirements between them for
achieving bistability.

We then establish the set of geometrical parameters for our
finite element ‘‘starting’’ model in Section 5, where we first focus
on grid shells: we describe mesh generation, the choice of
elements, the boundary conditions, solution control and how to
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establish multistable behaviour from the simulations. We also con-
sider the sensitivity of performance to element density and we dis-
cuss the deviations in deformed equilibrium shape compared to
the UC model assumptions. Parametric studies on bistability are
then carried out by varying the initial radius of curvature and the
height-to-width ratio of constituent beam elements. The latter
frames further study on the effective depth of the grid shell, where
deeper shells are considered to be honeycomb shells but which
must be constituted of shell elements for accurate computational
assessment. A parametric study follows, but not at the same level
of detail as before for the sake of brevity. Out of interest, we show
that a helically-curved honeycomb shell can also be bistable before
concluding with a summary of our findings.

2. Physical demonstrator

The design and construction of a hand-held physical model was
pursued, where the planform dimensions are in the order of deci-
metres. In terms of material, any isotropic material satisfies the
mechanical properties. However, the large deformations involved
in travelling from one stable state to the next need to be consid-
ered. An intermediate flat state helps establish an upper ceiling
for the required strains. For example, let us consider a cylindrical
shell with a square a� a planform, a thickness h and initial curva-
ture radius of curvature qi. Considering a known symmetry for
bistable cylindrical shells during the transition to a secondary state
(Guest and Pellegrino, 2006), the originally curved direction of the
shell ends up in an almost flat configuration. Hence an estimate for
the strain upper limit of the extreme fibres is given by:

� ¼ h
2qi

ð1Þ

For h ¼ 10 mm and qi ¼ 160 mm, values of practical concern here,
� � 3%, which is greater than typical maximum strains for metals;
hence, we need to consider alternative materials. Thermoplastics fit
the strain requirement; they can withstand strains above 10%
before yielding, depending on the type of the plastic (Biron,
2012). In addition, they can be easily cut and drilled. Finally, they
can be bent and shaped at a low temperature — the so-called crys-
talline melting point — below 200 �C in some cases (Tripathi, 2002).
If the material goes beyond this temperature, deforms and then
cools to below its recrystallisation temperature, it retains its
deformed shape.
Fig. 1. A honeycomb structure carved out of a solid polypropylene sheet using a water-je
are 300 mm� 300 mm. The unit cell has a length of 10 mm while the ligament cross-sect
operation, and results in a few imperfections, seen more clearly on the right.
A demonstrator is constructed out of a 6 mm sheet of the ther-
moplastic polypropylene (PP), which is cheap and widely available.
A water-jet cutter is used to shape the desired local geometry,
starting with a 300 mm� 300 mm square. The side-length of unit
cell — the ‘‘ligament’’ length, is 10 mm, and the target ligament
thickness is 0.1 mm, which is very thin and leads to a few imper-
fections as seen in Fig. 1. The sample is then constrained by a cylin-
drical mould with a radius of 160 mm and heated to a temperature
of 160�.

After cooling the sample to room temperature and removing the
mould, we observe a spring-back effect — the demonstrator does
not lose all residual stress during heating — but it remains cylindri-
cally curved. There is also some local buckling of ligaments, since
the sample was constrained to bend in the mould at room temper-
ature. Nevertheless, bistable behaviour is ascertained as docu-
mented in Fig. 2. The second state is almost cylindrical, with a
smaller curvature orthogonal to the initial curvature but directed
out-of-plane in the same sense, as predicted by both the simula-
tions and the theoretical model; there is also a second, very mild
principal curvature in the same direction. Repeated loading pro-
duces a relaxing effect, eventually taking the curvature outside
the bistable region: but despite its lack of robustness, this novel
structure proves the feasibility of almost developable multistable
honeycombs.
3. Characteristics of grid shells and honeycombs

Grid shells — also known as lattice shells and reticulated shells
— are defined globally in the same way as conventional shell struc-
tures but locally, we must account for their construction from
beam-like elements rigidly connected to each other; this is carried
out momentarily. There are numerous construction and cost bene-
fits associated with grid shells, but here we note the following:
they allow light through — at least much more so than a continu-
ous structure; they allow the exchange of gases and fluids between
the spaces that they define, which can be a critical characteristic in
engineering applications; they are generally lighter than their con-
tinuous counterparts; and finally, in architectural terms, the partic-
ular discrete topology can be aesthetically desirable (Malek, 2012).

We now proceed to define a local geometry for the constituent
beam-elements. We assume a rectangular cross-section for the
members or ligaments and that all members are identical in
dimensions: their exact dimensions are one subject of later
t cutter to produce a connected ligament network. The dimensions of the flat sheet
ion is 0:1 mm� 6 mm. The required small ligament thickness proves too delicate an



Fig. 2. A polypropylene demonstrator showing the two stable geometries for a honeycomb shell design. The left image shows the initially, perfectly cylindrical geometry,
while the right image shows the secondary geometry, rotated by 90�. Although the second geometry is also approximately cylindrical, a mild curvature is also seen in the
orthogonal direction. It is also clear that the radius of curvature in the second state is larger than in the initial geometry, as predicted by both the theoretical model and the FE
simulations. Due to creep effects, the success of this design — with this particular material — was short-lived.
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analysis. Both the global pattern and the local geometry are dis-
played in Fig. 3, indicating a regular orthotropic grid and labelling
of the beam-element geometry, specifically the length, height and
width of the beam as d; h and b, respectively.

By considering different orientations for the grid shell, a dra-
matic variation of the in-plane mechanical properties can be
achieved. For example, there must be a reduction in stiffness if
we compare the effective Young’s modulus in the X-direction vs
that in the x-direction. In the former, deformation originates in
the stretching of the beam-elements while in the latter, their bend-
ing contributes the most. These effects are explained further in the
next section.

For grid shells, it is reasonable to assume that members behave
as beams provided the height-to-width ratio for the cross-section,
h : b, remains small. Above a certain ratio, the structure becomes
honeycomb-like, with deep members that must be treated as
plate-like elements. The in-plane properties of grid-shells and
Fig. 3. Detail of the square grid shell (left) and the local geometry with the relevant dimen
principal stiffness directions (i.e. the network); x–y is a global coordinate system that i
orientations are considered. Multistability is promoted by high Poisson’s ratio and high
align the diagonal of the grid with these directions (x–y). A diagram of a square unit cell
external forces. Assuming rigid nodes, and accounting for symmetry, each beam-element
(x–y) coordinate systems, are both displayed. When the two coordinate systems align, the
deformation is bending-dominated.
honeycombs for a given pattern should be the same, but we expect
the out-of-plane properties to vary significantly with the height of
the elements, h. The distinction between them is quantified
momentarily.

3.1. Homogenisation of mechanical properties

A square grid shell can easily allow adjustment of the modular
ratio for an orthotropic shell by adjusting the cross-sectional areas
of beam-elements in the two directions. At the same time, we can
expect the Poisson’s ratio to increase dramatically after the removal
of material in such a pattern. An exaggerated effect can be visual-
ised in the form of a square truss, with the nodes of the grid in
our design corresponding to hinges in the truss and the strips of
material corresponding to rod elements. Stresses in the diagonal
direction clearly affect the geometry in the principal direction more
intensely than on a solid plate. With this setup in mind, we can
sions (right). X–Y is a fixed coordinate system in the grid shell, always aligned to the
s fixed in space and is either aligned or at 45� to the X–Y system. No intermediate
shear modulus in the directions of the principal curvatures of the shell. Hence, we
on a grid shell is shown in the centre, before and after the application of opposing
is treated as an Euler–Bernoulli beam, fixed at both ends. The local (X–Y) and global
deformation is stretching-dominated, while when they are at 45� to each other, the



Fig. 4. Plots of the variation of the Poisson’s ratio and the shear modulus-related
parameter for grid shell structures with respect to the local geometry. These
estimates are made in correspondence to A and D matrices.
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visualise the square pattern turning into a diamond-shaped pattern
to accommodate the applied loading. The effect of loading along the
principal direction would be carried by the structure along that
same direction, with the perpendicular rods remaining unstressed,
and hence with no geometrical change in that direction, i.e. the
Poisson’s ratio vanishes. In reality, there is some stiffness due to
the nodes, and a truss equivalent is not ideal; it is more appropriate
to consider each beam-element as having fixed supports at both
ends, since symmetry dictates no rotation at the nodes. Conse-
quently, the resulting displacements for a unit cell rotated by 45�
and in tension are primarily due to the bending of the beam-ele-
ments. A diagram of expected deformation for a unit cell is shown
in Fig. 3, overlaid on the original, unstressed square geometry.

For an elementary quantitative analysis, we turn to a model by
Lebée and Sab (2013), which assumes the grid elements to be iden-
tical beams. While that work proceeds to describe a more elabo-
rate, and more accurate formulation, we admit the simpler
formulation for the purposes of this study. Here, the standard
ABD notation for the constitutive properties of shells is used. The
homogeneity of the grid shell in the out-of-plane z-direction
ensures that the B matrix is zero. If we consider a square grid, as
pictured in Fig. 3, then we have matrices A and D with respect to
the local coordinate system (1-2-3), where 3 is the out-of-plane
direction, given by:

A ¼

ES1
d 0 0

0 ES1
d 0

0 0 d
GS2
þ d3

12EI3

� ��1

0
BBB@

1
CCCA; D ¼

EI2
d 0 0

0 EI2
d 0

0 0 GJ
d

0
BB@

1
CCA; ð2Þ

where S1 is the cross-sectional area of a beam (¼ bh) and S2 is its
shear area (¼ hd); I2 and I3 are moments of inertia about the 2
and 3 axes, respectively; E and G are moduli of the homogeneous
material; and J is the torsion constant. An approximation for the lat-
ter for a rectangular section is found in Young and Budynas (2002),
to be equal to:

J ¼ hb3 1
3
� 0:21

b
h

1� b4

12h4

 !" #
; ð3Þ

when h > b. The formulation for D again assumes beam-like behav-
iour for each element, with a neutral mid-surface of zero in-plane
strains.

The A and D matrices noted above can be used to obtain the cor-
responding matrices in different orientations with a rotational
transformation. For example, if we want to obtain equivalent in-
plane, homogenised moduli for a sheet in a direction 45� to the
direction of the beam-elements, we first apply a rotational trans-
formation to A, producing:

Ad ¼ A45� ¼

Ehb d3þ2db2þ2b3ð1þmÞ½ �
2d d3þ2b3ð1þmÞ½ �

Ehb d3�2db2þ2b3ð1þmÞ½ �
2d d3þ2b3ð1þmÞ½ � 0

Ehb d3�2db2þ2b3ð1þmÞ½ �
2d d3þ2b3ð1þmÞ½ �

Ehb d3þ2db2þ2b3ð1þmÞ½ �
2d d3þ2b3ð1þmÞ½ � 0

0 0 Ehb
2d

0
BBBBB@

1
CCCCCA; ð4Þ

where the d subscript refers to the diagonal (45�) orientation with
respect to the unit cell’s local geometry. From this, we can extract
corresponding homogenised parameters quite easily:

mA ¼
Ad21

Ad11
¼ d3 � 2db2 þ 2b3ð1þ mÞ

d3 þ 2db2 þ 2b3ð1þ mÞ
ð5Þ

and

aA ¼
Ad33

Ad11
¼ d3 þ 2b3ð1þ mÞ

d3 þ 2db2 þ 2b3ð1þ mÞ
: ð6Þ
The same procedure can produce corresponding parameters for
bending by operating on the D matrix. These are:

mD ¼
Ad21

Dd11
¼ �400h5b2 þ 252h4b3 � 21b7 þ 100h7ð1þ mÞ

400h5b2 � 252h4b3 þ 21b7 þ 100h7ð1þ mÞ
; ð7Þ

and

aD ¼
Dd33

Dd11
¼ 100h7ð1þ mÞ

400h5b2 � 252h4b3 þ 21b7 þ 100h7ð1þ mÞ
: ð8Þ

We plot values of these parameters for different local dimensions in
Fig. 4. The values for the Poisson’s ratio and the shear modulus
parameter, a, that correspond to the matrix A are almost unchanged
by the variation of the geometry, where their values are very close
to unity for the entire range of geometry that we are examining. The
same values, when estimated from the corresponding D matrix vary
significantly — in the range of 0 to 1 for m and 0.5 to 1 for a. Recall
that for our model to be valid h > b, hence we only plot the esti-
mates for h=b > 1.

The homogenisation method becomes more accurate when the
local dimensions are much smaller than the planform dimensions
of the shell. However, in the simulations that follow, we also have
to balance that theoretical requirement with practical consider-
ations, such as the constructibility of the shell and computational
cost: we therefore choose the global dimensions to be more than
25 times the width of the unit cell and we note that we are dealing
with elastic phenomena locally, where the properties reliably
scale.
4. Analytical model

An expression for the strain energy stored in the deformed shell
with components due to shallow bending and in-plane stretching
is taken from Seffen and Maurini (2013) and is, in turn, an exten-
sion of previous work found in Seffen (2007) and Fernandes et al.



E.G. Loukaides, K.A. Seffen / International Journal of Solids and Structures 59 (2015) 46–57 51
(2010). We reproduce it here in its simplest dimensionless form, in
the absence of pre-stressing and for an initially cylindrical
configuration:

U ¼ jxjy � j2
xy

� �2
þ ðjx � jx0Þ2 þ 2mDðjx � jx0Þjy þ j2

y þ aj2
xy

h i
;

ð9Þ

jx and jy are the dimensionless observed curvatures, jx0 is the
dimensionless initial curvature of the shell, which is arbitrarily
assigned to the x direction, mD is the out-of-plane Poisson’s ratio
and a is proportional to the in-plane shear modulus of the shell,
and thus to aD from the previous section. Also recall the aA and mA

parameters from the previous section which would normally be
used to solve the membranal problem. In Seffen and Maurini
(2013) the curvatures are made dimensionless by multiplying by
the factor a2=t, where a is the planform dimension for the shell
and t is the thickness. Equilibrium states are given by minimising
the energy stored according to calculus of variations; since our
model exhibits no twisting curvature as observed in our demonstra-
tor, we may assume solutions where jxy ¼ 0 is valid. It can then be
shown after differentiating U that the remaining non-zero curva-
tures are found by solving the coupled algebraic equations:

jx � jx0 þ jyðjxjy þ mDÞ ¼ 0; jy � jx0mD þ jxðjxjy þ mDÞ ¼ 0:

ð10Þ

Closed-form solutions are achievable, but too lengthy to be imme-
diately useful, or presentable here; but it is clear from inspecting
them that they are a function of the initial curvature and the Pois-
son’s ratio only. The stability of solutions is then assessed by the
Hessian of the same energy expression, specifically, for stability to
be guaranteed, it is sufficient to show that all eigenvalues of the
Hessian are positive for the equilibrium under consideration. The
general form of the eigenvalues, k, can be found as:

k1 ¼a�2jxjy;

k2;3¼
1
2

2þj2
x þj2

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4

x þ14j2
xj2

y þj4
y þ16jxjymDþ4m2

D

q� �
: ð11Þ

In k1; a does not cause instability for developable equilibria, but a
minimum shear modulus is required for doubly curved equilibria
to be stable. The second eigenvalue, k2, with a positive sign before
the root, is always positive. The sign of the third eigenvalue depends
on the relative magnitudes of jx; jy and m. A brief numerical inves-
tigation proves the feasibility of bistability for such a structure, for a
range of Poisson’s ratio and shear modulus values, where the rele-
vant plot is given in Section 5.2.1 — with consideration for both
in-plane and out-of-plane properties.
Fig. 5. End view of the global initial geometry of the shell defined by the planform
dimensions, ax and the initial curvature, qx; the apex height relative to the edges
is H.
5. Finite-element analysis

This concept for a bistable shell is tested through finite element
(FE) simulations on the commercial software package ABAQUS
(Abaqus, 2007). A number of parameters are required to fully
define the geometry of such a structure. In this section we assume
an initial cylindrical geometry for a shell with a rectangular plan-
form. Double curvature facilitates multistability — i.e. isotropic
materials can be used for constructing doubly curved, bistable
shells — so omitting it here ensures that the effects we observe
are the product of global material properties, and not only of
extensional effects. The set of required dimensions to fully define
each geometry is as follows:

� Global geometry:
– length of shell projection along x-direction (ax)
– shell length along y-direction (ay)
– cylinder radius of curvature — along x-direction(qx)
– global thickness. The global thickness for a grid shell is not a

directly accessible quantity. We can simply assume the value
given to the local beam-member height, or we can treat it
with various homogenisation methods.

� Local geometry (defined previously):
– length of beam-members (d)
– beam-member cross-section width (b)
– beam-member cross-section height (h). We treat this as the

global shell thickness as mentioned above.

These are shown in detail in Figs. 3 and 5.
ABAQUS has a graphical interface that facilitates defining the

geometry of the structure we are examining, the loads, the bound-
ary conditions etc. However, the resulting structures cannot be
modified easily. In addition, the mesh-like, curved structure at
the basis of our study, cannot be drawn with any standard tools
and attempting to draw it manually (node by node) would be
impractical. An alternative exists for the user in the direct use of
input (.INP) files that ABAQUS can read in simple text and which
define the entire simulation with appropriate commands. The writ-
ing of a text file can be easily automated and, in this case, the .INP
file is written in the open source software language, PYTHON, as an
executable script. In this script, the 3D coordinates of each node
and member are defined in a parametric mathematical form, so
that the local and global geometry can be changed by adjusting
only the dimension(s) of interest — greatly assisting parametric
studies. Similarly, all remaining options for the simulation are
input as text commands.

The simulation is composed of two Dynamic Implicit steps, with
quasi-static application — a method suitable for non-linear struc-
tural problems (Dassault Systémes/Simulia, 2011). The node corre-
sponding to the centre of the shell is held fixed for all degrees of
freedom. In the first step we use displacement control on two
nodes on opposite sides of the shell as shown in Fig. 6: all other
nodes are unconstrained, allowing for the possibility of, for exam-
ple, twisted shapes as well as ordinary curved deformations. Dur-
ing the second step, displacement control is removed and the
shell is allowed to return to a load-free equilibrium geometry. Ele-
ments of type B31, a three-node linear beam element, are used
with four elements per ligament after a brief mesh sensitivity
study, see Fig. 7.

For a set of cases that follow, the global geometry is fixed and
the effects of local geometry variations are examined. The global
dimensions are fixed as follows: ax ¼ 520 mm; ay ¼ 520 mm;

qx ¼ 300 mm, thus mirroring a realistic design for a hand-held
demonstrator. Later, the effect of the global curvature on multista-
bility is also examined.



Fig. 6. In a series of finite element simulations using the commercially available software package, ABAQUS, a cylindrical grid shell is modelled with displacement control
applied in the pattern indicated by arrows. The shell is free at the boundaries, but is constrained in all directions at the centre node (marked with a dot). All other nodes are
completely free.
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Fig. 7. Different resolutions for the mesh were tested for the basic geometry of the
shell, with n noting the number of elements per beam. The chosen metric is the
displacement of the midpoint of one of the sides of the shell. The results are
converging and four elements per beam are judged sufficient.

Fig. 8. Strain energy for the shell, plotted against time within two Implicit Dynamic
ABAQUS steps, with a duration of 100 s for each step. During the first step, the shell
is gradually loaded: we can distinguish a minimum for the energy conforming to a
second equilibrium geometry. In the second step, we remove the loading boundary
condition and the shell returns to the second state. The value of the final strain
energy is equal to the value at the minimum.
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5.1. Proof of concept

We begin with one case in detail, to establish that bistability is
feasible under these specifications. We fix the remaining spatial
variables such that d ¼ 10 mm; b ¼ 0:2 mm; h ¼ 0:8 mm. For this
ligament length the total number of elements is equal to 5184.
The ratio of the length of the beam-member to the beam cross-
sectional dimensions is greater than 100 and large enough for an
Euler-beam assumption to be reasonable. The corner node is
displaced by 150 mm along the z-axis over the duration of the first
step, and both the loading and the relaxation steps have a duration
of 100 s. The Young’s Modulus for the material is set to equal
those of aluminium at 69 GPa and the Poisson’s ratio at 0.32, to reflect
a realistic material. The corresponding homogenised material
properties can be found through Eqs. (5)–(8) which give mA and aA

approximately equal to unity (0.998 and 0.999 respectively), and
mD ¼ 0:72 and aD ¼ 0:86.

We present a plot of the total strain energy in Fig. 8. During
the loading period we see a clear minimum; when we remove
the displacement boundary condition at the corner node, the
strain energy settles at this value and does not return to an
unstressed state. Both these observations confirm the existence
of a second stable geometry for this shell. The initial state, as
noted above, is perfectly cylindrical. The second state, on first
inspection, appears to be approximately cylindrical in the same
sense as the initial state, but with the two directions of curvature
reversed.

A detailed examination of the secondary stable geometry is
shown in Fig. 9. The profiles of the shell in the x- and y-directions
are isolated and plotted in two separate sets of axes. The first pro-
file, in the direction of initial zero curvature (y), appears almost
uniformly curved, with a larger radius of curvature than the initial
state. A dotted, circular arc is also plotted in the same set of axes
for visual comparison, and we observe an almost perfect match.
The profile in the x-direction is drawn exaggerated in the z-direc-
tion. Although, the deviation from a flat profile is small, it is notice-
able where, towards the centre, the shell is concave upwards. At an
approximate radial distance of two thirds of the total shell radius,
the curvature changes sign and is maintained until a boundary
layer where the curvature is more pronounced. The deviation from
the central node in the perpendicular direction does not exceed
13 mm at any point (less than 4.3% of the shell’s half-width), while
the maximum value is observed at the periphery. Given these
results, it is appropriate to refer to the second stable configuration
as almost cylindrical. Coburn et al. (2013) obtained similar results
when producing, through composites, a tristable shell. This varia-
tion of curvatures was predicted in Vidoli (2013) using a coarse
von Kármán model with quadratically varying curvature.



Fig. 9. The geometry of the second state is presented here in more detail. We plot
the profile of the shell for x ¼ 0 and y ¼ 0 respectively (the coordinate system was
defined in Fig. 5). In the former case, we contrast the plot with a circular arc of
368 mm radius. The comparison shows an almost exact match. In the other
perspective — shown in an exaggerated aspect ratio, curvature is more subtle. The
y-profile is almost flat towards the centre, but with a more pronounced curvature
towards the boundary. There is a switch in the sign of the curvature near the radial
centre.

Fig. 10. Comparison between force–displacement diagrams for different beam-
member thicknesses. The vertical reaction force from the corner node of the shell, at
which displacement control is applied, is P. Both the force and the displacement are
made dimensionless by appropriate coefficients, while the beam-member width is
fixed at 0.2 mm. For a square cross-section we observe a prominent snap-through
effect, but not a second equilibrium. Increasing the thickness — and hence the ratio
between beam height and width — we observe a second load-free equilibrium for
ratio approximately three and above. The irregularities in the plot for thinner local
thickness can be attributed to local buckling effects. This induces a global rippling,
detracting from the assumption of uniform deformation.

E.G. Loukaides, K.A. Seffen / International Journal of Solids and Structures 59 (2015) 46–57 53
5.2. Parametric studies

To the authors’ knowledge, this is the first time a grid shell has
been investigated in the context of multistability. Hence, almost
every parameter that we have treated as a constant in the basic
case is worthy of further investigation, including local and global
dimensions and their relative magnitudes. In this section, we limit
our investigation to those parameters that appear the most critical
or to the local geometry parameters that are not directly assessed
by our UC model, namely the cross-sectional dimensions of the
beam-elements. Later, the initial curvature and the moment of
inertia of the beam-element are also investigated with respect to
multistability.
Fig. 11. Results of homogenisation model for grid shell properties from Section 3.1
showing the dependence of multistability on cross-sectional dimensions. The
parameter values are calculated through Eqs. (5)–(8) and then substituted into the
dimensional energy expression from Eq. (9), allowing for numerical solutions for
stable equilibria. We only plot values of h > b in accordance with our model’s
assumption for Eq. (3), while the remaining variables match the values used in the
FE simulations in this section. There is a cut-off point for bistability at a constant
ratio between h : b, approximately equal to five.
5.2.1. Ligament height-to-width ratio
We focus first on the influence of the cross-sectional height of

the member beams (h) on bistability. We fix all parameters except
h and perform a series of simulations as described in Section 5. The
cross-sectional width is set at 0.2 mm. The height is varied
between that same value and increased by 0.2 mm up to a value
of 1.2 mm.

Results of this study are shown in Fig. 10, in the form of force–
displacement diagrams. The value for the force is specific to the
node also used for displacement control and shown in Fig. 6, while
displacement, w, also refers to the same node. Both the force and
displacement outputs are rendered dimensionless: the force is

multiplied by qx=ðEh3Þ and the displacement is divided by the apex
height, H, shown in Fig. 5.

The resulting force–displacement graphs show a characteristic
snap-through effect for all cases. As h is increased, the plot crosses
the displacement axis for the first time when h ¼ 0:8 mm. The case
of h ¼ 0:6 mm is almost tangential to the displacement axis at its
lowest point. Thus in this scenario, a ratio of h : b greater than an
approximate value of three is needed for bistability, while addi-
tional simulations for h > 0:8 mm are consistent.
We add to these conclusions by returning to the material prop-
erties for the grid shell obtained in Section 3.1 in Fig. 11. We pro-
duce a colourmap of the stability regimes for specific global
dimensions, matching the dimensions of the simulations, while
varying the cross-sectional height and width, h and b respectively.
This plot supports a constant minimum ratio of h : b for bistability
to be possible, with a value close to five. Recall from earlier in this
section that this is in rough agreement with our simulations, which
show an approximate value slightly above three for a similar
scenario.

For larger h : b ratios our beam assumption becomes defunct.
Once h and d have comparable values, and while b retains a small
relative value (20b < h � d), it is reasonable to begin treating each
ligament as a plate element. This results in a global honeycomb



Fig. 13. One of the notable results of our simulations is the scaling of the energy
with respect to cross-sectional dimensions of the grid shell ligaments. In this plot
we compare the total strain energy for three grid shells undergoing the same
displacement-controlled deformation. The three cross-sections examined are
0:02 mm� 0:06 mm; 0:1 mm� 0:3 mm and 0:2 mm� 0:6 mm. The energy scales
proportionally to moment of inertia of the cross-section, or hb3, which indicates a
bending-dominated deformation.
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structure and is investigated further in Section 5.3. We should note
that repetition of this study with a change in cross-sectional width
shows that the ratio of the two cross-sectional dimensions is the
critical parameter and not the absolute value of one or the other.

5.2.2. Initial curvature
Another critical parameter for bistability, is the initial curvature

of the shell, with respect to a planform of constant dimensions.
Equivalently, we may consider the apex height of the shell as the
critical parameter, since the three parameters are related, with
the global geometry from Fig. 5. The relevant series of FE simula-
tions fixes the planform dimensions, ax and ay, as all other simula-
tions to be square: 520 mm� 520 mm. The ligament cross-section
is 0:1 mm� 0:4 mm, the length of the ligaments is 10 mm and the
initial radius of curvature, qx, varies between 300 mm and 550 mm
at 50 mm intervals.

The results of the parametric study are shown in Fig. 12, where
dimensionless force–displacement diagrams are plotted for all the
tested values. The last case to be marginally bistable, for increasing
values of the curvature, corresponds to a global radius of curvature
equal to 450 mm, with a depth-to-planform length ratio equal to
0.16. Although this is a specific case with absolute dimensions,
the trend observed can greatly inform future physical designs.

5.2.3. Cross-sectional scaling
A notable observation regarding the strain energy of the shell is

obtained by scaling the dimensions of the cross-section: the ratio
h : b is kept fixed (at a value of three) with the absolute values of
the ðh; bÞ pair as (0.02 mm, 0.06 mm), (0.1 mm, 0.3 mm) and
(0.2 mm, 0.6 mm). The strain energy from the simulations is pre-

multiplied by a factor hb3 and is plotted in Fig. 13, where all curves
match almost exactly. The scaling used matches the moment of

inertia of the cross-section, which takes the form hb3
=12 for a rect-

angular cross-section; and a linear relationship between the strain
energy and the local moment of inertia indicates bending-domi-
nated behaviour throughout the geometrical transition.

5.3. Honeycombs

Honeycombs are a natural extension of grid shells. We make the
distinction between the two to mainly signify a change in our
assumptions about the relative ratios of the parameters h; b and
d. We use the same square pattern as for grid shells, and we use
the same symbols for the geometry as before.
Fig. 12. Multistability is also affected by the initial curvature of the shell. Starting
with the base grid shell case, the radius of curvature is gradually increased for a
series of simulations, and dimensionless force–displacement diagrams are pre-
sented here. The last marginally bistable grid shell in this progression occurs for a
radius of curvature equal to 450 mm.
A series of FE simulations are performed under the plate
assumption for the ligament geometry. The model has the same
global parameters as the earlier grid shell model: locally, the dis-
tance between nodes, or the ligament length (d) is initially set at
10 mm, while the ligament thickness is fixed at 0.1 mm. The ratio
of d : b is large enough to admit a plate geometry, as long as the h
parameter is also sufficiently large. We only admit h values greater
than 2 mm, or a ratio of h : b greater than 20.

The ABAQUS model extends the grid shell model using an addi-
tional layer of nodes, which is added at a radial offset from the ori-
ginal set. All nodes now define the corners of the connecting
ligaments shell-elements, whose middle surface is orthogonal to
the global shell’s middle surface. Four-noded quadrilateral S4R
shell elements are chosen to maintain a reasonably fast simulation,
where the number of elements is fixed at 4� 4 per rectangular
plate-ligament. With d ¼ 10 mm and planform dimensions
520 mm� 520 mm, a total of approximately 80,000 elements are
needed.

One immediate goal is to establish the limit of bistable behav-
iour with respect to large values of h. In Fig. 14 we plot the strain
energy for various values of h where only the early part containing
possible strain energy minima is required. For low values of h, the
plots are consistent with the grid shell simulations and a clear min-
imum for the strain energy appears during the loading phase. This
Fig. 14. Switching to a honeycomb model on ABAQUS allows for a new range of
ligament geometries to be examined. An initially cylindrical shell is tested with
planform dimensions (520 mm� 520 mm), ligament length d ¼ 10 mm and liga-
ment thickness b ¼ 0:1 mm. By varying the ligament height, h, the upper limit of
the bistable behaviour is shown to be almost 30 mm.



Fig. 16. Comparison of the behaviour of the honeycomb structure for high values of
ligament thickness — as shown in Fig. 14 — with the theoretical prediction. The
dimensional strain energy form of equation Eq. (9) is used to obtain the equilibria
and plot the stability regions for the corresponding homogeneous shell. The global
dimensions have the same values as all the simulations in this section, while for this
plot the Poisson’s ratio is set to a value of 0.95. Bistability is lost for values of
thickness between 20 and 25 mm, depending on the value of the shear modulus.
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minimum is eventually lost for values of h ¼ 30 mm and higher. A
value of h ¼ 25 mm also allows bistability, but is omitted from the
plot for clarity.

In Fig. 15 snapshots from one simulation are displayed for two
reasons: they help visualise the differences in local geometry of the
honeycomb model with the earlier grid shell model, and they give
a clear image of the intermediate and final stable equilibria of the
honeycomb shell. With respect to the latter, the secondary stable
configuration is extremely similar to the one obtained for grid
shells, during the transition however, the honeycomb forms a sad-
dle-shape, a behaviour that is not observed for grid shells to such
an extent.

A stability overview of the corresponding homogeneous shell
with the same global dimensions is also offered in Fig. 16 with
respect to the shear modulus, G, and the thickness of the shell, t.
The material properties are arbitrarily chosen to roughly corre-
spond to the analysis in Section 3.1; the Poisson’s ratio is set at
0.95 — a high value that fits the theoretical requirement — and
orthotropic behaviour is assumed. Fig. 16 shows that we cannot
obtain bistability for a narrow band of low shear modulus, when
G=Giso is less than two. When the shear modulus is sufficiently
large for bistable behaviour, bistability is lost at an approximate
thickness of 22 mm, which increases marginally with the value
Fig. 15. The simulated transition of a honeycomb shell from an initial cylindrical geometry to a second stable configuration. The resulting shapes are similar to those for a grid
shell, where the ligaments are modelled as beams. Here, the ligaments are modelled as shells and in this particular model, each ligament has dimensions
10 mm� 10 mm� 0:1 mm, although thicknesses up to 25 mm achieved bistability for square shells of side 520 mm. The figure also displays the relevant thickness of the
honeycomb shell compared to global dimensions. The time represents the proportional displacement actuation for the first 100 s and the unloading phase for the final 100 s.
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of the shear modulus. The theoretical result is in rough agreement
with the results of the FE simulations.

The comparison with theory is expanded in Fig. 17, which
shows first in Fig. 17a contours of the strain energy across the
ðjx;jyÞ plane for a thickness of 10 mm. There are two distinct min-
ima corresponding to two cylindrical geometries, and the curva-
ture of the second state is slightly smaller. After connecting the
two minima with a straight line, the strain energy is plotted along
this profile. This sectioning allows for the theoretical result corre-
sponding to Fig. 14 to be plotted in Fig. 17(b). The deformation
path during actuation is not explicitly plotted here, but can be
extrapolated from Fig. 17(a) and is consistent with the hyperbola
jxjy ¼ constant, i.e. the shell proves to be almost inextensible.
The loss of the second energy minimum is the focus here, and for
this purpose this profile suffices. A rough agreement with the FE
simulations is again immediate.
Fig. 17. The contour plot at the top shows the variation of the predicted
dimensional strain energy according to Eq. (9). The global geometry is the same
used throughout this section, but we assume a homogeneous shell with a Poisson’s
ratio of 0.95 and a shear modulus twice the isotropic value (0.5); the thickness is set
at 10 mm. The secondary equilibrium appears at ðjx;jyÞ ¼ ð2:45� 10�6;0:00316Þ
or (almost) as a same-sense cylinder with a radius of 316 mm — slightly larger than
the initial radius. At the bottom we plot the strain energy profile along the dashed
line in the top diagram. This is done for various shell thicknesses to show the
correspondence to the simulated honeycomb structure results in Fig. 14.
5.4. Helical grid shell

The geometrical possibilities for a bistable grid shell are not
limited to neither shallow shells nor square planforms. In order
to test matters, we arbitrarily chose a helicoidal shell with dimen-
sions similar to earlier structures. The ABAQUS planform is a rhom-
boid with sides of 300 mm and 900 mm with its largest internal
angle equal to p

2 þ arctan 1
2

� �
. The shortest side is parallel to the

x-direction, and the rhomboid is then wrapped along a cylindrical
mathematical surface with its axis parallel to the x-direction. The
initial geometry is displayed in Fig. 18(a), where the cross-section
of the ligaments is once again assumed to be rectangular with
dimensions 0:2 mm� 0:8 mm. The shell is loaded by displacement
control of the centre nodes on the two shorter sides, which are dis-
placed along the y-direction, beyond the flattening of the grid shell
in this direction, and then released. A two step, Dynamic Implicit
model is setup in ABAQUS, as with earlier simulations. The strain
energy of the system is shown in Fig. 18(b).

A clear minimum is seen after a sudden dip during the loading
phase (0–100 s). After the relaxation phase, the strain energy
returns to the geometry of a secondary geometry, in agreement
with the earlier minimum value. The secondary stable geometry
is also shown in Fig. 18(a) and closely matches a cylindrical sur-
face, with an axis along the y-direction. Such a design potentially
allows for more control of the stiffness in both directions contrary
to the shallower, square design.
Fig. 18. An initially helical, bistable grid shell is shown at the top from an ABAQUS
simulation. On the left column we see the initial geometry, and on the right column
the final geometry after actuation and relaxation. The top row shows a side view of
the shell while the bottom row shows the shell viewed from above. At the bottom
we show strain energy vs time for the helical grid shell FE simulation. We can see a
clear minimum during the actuation phase (0–100 s). The actuation in this case is
not optimised with respect to the second stable configuration; this might explain
why the dip to the minimum is more sudden than in earlier simulations. The
relaxation phase concludes at the same strain energy, confirming the bistable
character of this structure.
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6. Summary and concluding remarks

This work has investigated a novel multistable shell without
using composite or prestressed materials. By taking advantage of
the change in global material properties from the patterning of grid
shells and honeycomb shells, suitable designs can produce multi-
stability in relatively simple structures. In contrast to composite
designs, this method is easily scalable — from the micro to the
architectural scale. In addition, it facilitates light and fluid perme-
able structures. The construction of a thermoplastic demonstrator
honeycomb confirmed the bistable nature of such a structure,
albeit short-lived due to creep effects; there is considerable scope
for an improved model. A series of FE simulations helped us under-
stand the necessary local patterning with respect to the global
dimensions. Specifically, developable shells were investigated.
Parametric studies focused on the limits of multistability with
respect to the global thickness of the shells and to the global radius
of curvature. In addition the predicted initial and secondary global
geometry for bistable grid shells were explored. Finally, the FE sim-
ulations indicated that the deformation is bending dominated.

This study is not exhaustive but it establishes the feasibility of
multistability in the context of grid shells and honeycomb shells.
This discovery invites further examination of our assumptions for
material homogenisation and motivates the investigation of more
elaborate patterns — potentially to increase the energy barrier
between stable states and to address boundary effects. We look
forward to pursuing such work in the future.
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